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Abstract
To verify the accuracy and rationality of discrete fracture network modeling, a comprehensive method for evaluating the 
similarity between two-dimensional fracture maps is proposed in this study. Five evaluation indicators for two-dimensional 
discrete fracture networks are proposed, including spacing, length, angle, position, and density of rock fractures. Based on 
the quantitative characteristics of each indicator, methods for evaluating data distribution similarity based on the Wasserstein 
distance function and matrix similarity based on vector cosine values are proposed. Considering the grouping characteristics 
of trace lines that are neglected in existing similarity systems, the similarity between each indicator is calculated based on 
the grouping matching of trace line maps. This achieves the comprehensive calculation of grouping similarity and overall 
similarity indicators. The importance and size effects of indicators are discussed through fracture model examples. The results 
show that the indicators of grouping similarity are more rigorous and suitable for engineering modeling with strict require-
ments compared to those for overall similarity. The proposed method effectively alleviates the difficulty of comprehensive 
distribution similarity evaluation and achieves a more objective similarity evaluation of position and density indicators. 
Finally, the established similarity evaluation system is applied to real tunnel construction in Hebei Province, China, provid-
ing application value for the accuracy of fracture modeling in practical engineering.

Highlights

• A comprehensive method for evaluating similarity between 2D fracture maps is proposed
• Five indicators are suggested, including spacing, length, angle, position, and density.
• Grouping characteristics of trace lines are considered in similarity calculation.
• Proposed method achieves a more objective evaluation of position and density indicators.

Keywords Rock tunnel · Fracture trace · Similarity analysis · Discrete fracture network

1 Introduction

The rock is divided into blocks of varying sizes by fractures, 
and the characteristics of the fractures largely determine the 
deformation and mechanical reaction mechanism of the 
rock, which has an important influence on the safety and 
stability of the rock mass (Bieniawski 1967; Hajiabdolma-
jid and Kaiser 2003). However, due to the frequent alterna-
tion of geological and engineering movements, the spatial 
morphology and distribution of rock fractures are extremely 
complex (Chen et al. 2022b; Kong et al. 2019; Yuan et al. 
2021). Accurate characterization of fracture characteristic 
parameters, such as the group number, spacing, size, and 
position, has become a key focus of engineering attention in 
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rationalizing fracture modeling (Rajwa et al. 2019). These 
parameters affect the discontinuity, heterogeneity, and ani-
sotropy of the rock to varying degrees and also affect the 
rock mass classification, construction decisions, and opti-
mization of parameter in tunnelling (Fraldi et al. 2019; 
Moomivand and Vandyousefi 2020). Therefore, the correct 
and reasonable evaluation of the accuracy and similarity of 
fracture modeling is of great significance for the safety and 
stability of rock construction.

With the rapid development of computer vision, the 
manual sketching method using geological compasses 
has been gradually replaced by machine vision recogni-
tion technology (Azizi and Moomivand 2021; Chen et al. 
2021a; Riquelme et al. 2015; Shen et al. 2023; Weidner 
et al. 2019). The algorithm for feature extraction of rock 
fractures continues to merge with numerical modeling analy-
sis, providing new ideas for the representation and analysis 
of real fractures in the field (Man et al. 2023; Zhao et al. 
2020). After the International Society for Rock Mechanics 
proposed a quantitative description of structural surfaces in 
rock masses, scholars have emerged to reveal the statistical 
distribution of geometric parameters of rock mass disconti-
nuities (Kong et al. 2021). Therefore, a method based on the 
stochastic simulation of fracture fractures began to be used 
to reconstruct rock mass models, namely discrete fracture 
networks (Fernández et al. 2023; Gottron and Henk 2021; 
Ma et al. 2019). Obviously, this is a statistical representation 
of rock fractures. However, the model established by this 
method does not strictly follow the geometric properties of 
the real rock fractures but is randomly generated based on 
the statistical parameters of these geometric properties (Wu 
et al. 2022). It is obvious that the generated fracture sets have 
certain randomness and uncertainty. Some scholars believe 
that discrete fracture networks with randomness and uncer-
tainty can demonstrate the mechanical properties of real rock 
(Li et al. 2019). However, many scholars also believe that 
only the selection of suitable fractures can better reflect the 
mechanical performance of real rock masses (Berrone et al. 
2019; Ma et al. 2022; Xiao and He 2022). Therefore, the 
problem that follows is how to comprehensively evaluate 
the differences between the model and reality.

The traditional graphical method usually performs only 
a qualitative analysis of real and simulated traces based on 
visual observation. However, due to the lack of reliable 
standards to define similarity, the validation results are often 
highly subjective (Reinhardt et al. 2022). With the devel-
opment of digital image processing technology and artifi-
cial intelligence, researchers have gradually begun to use 
machine vision technologies to reveal the similarity of trace 
maps (Chen et al. 2021b; Xu et al. 2021). Although exist-
ing research has conducted extensive studies on the simi-
larity of three-dimensional modeling, it is still difficult to 
meticulously evaluate the morphological similarity between 

actual fractures and modeling traces due to the complexity of 
statistical analysis of actual three-dimensional engineering 
traces (Cai et al. 2022; Han et al. 2020). On the other hand, 
this study mainly focuses on the research on the rationality 
of the fracture network modeling of rock masses, so it sum-
marizes more about the research status of two-dimensional 
modeling similarity. Currently, common two-dimensional 
fracture characteristics used by researchers for modeling 
similarity evaluation include length, angle, position, den-
sity, and other common indicators (Battulwar et al. 2021; 
Han et al. 2018; Masciopinto and Alghalandis 2022; Wang 
et al. 2020; Wei et al. 2023). The proposal of these indica-
tors provides important guarantees for the refinement of rock 
mass modeling and enhances the systematic evaluation of 
rock mass fractures. However, the current research is mainly 
confronted with the following three problems:

(1) The grouping and spacing of fractures are important 
indicators that reflect the characteristics of rock mass 
fractures (Sonmez et al. 2022), but they are rarely listed 
as indicators for similarity evaluation;

(2) Similarity analysis of individual parameter distribu-
tion is often based on comparison of the main control 
parameters of the distribution curve, while ignoring the 
distribution itself, which inevitably leads to statistical 
errors (Alghalandis et al. 2017);

(3) In terms of position and density statistics, relying on 
common window division areas for statistical analy-
sis may affect similarity due to the subjective selec-
tion of window scope and size (Wang et al. 2020). In 
current research, the corresponding similarity is rarely 
analyzed from the perspective of global position and 
density distribution.

To improve the fracture similarity evaluation system, 
specific improvements were made in this study. To solve 
the first problem, this study introduces indicators for trace 
grouping and corresponding spacing to more comprehen-
sively reflect the distribution law of fracture rock masses. 
Currently, K-means +  + , DBSCAN, and other methods 
are commonly used for automatic grouping of trace angles, 
while the Silhouette validity index has also been proven to 
be useful for selecting the optimal group (Battulwar et al. 
2021; Chen et al. 2022a). To address the second problem, 
Wasserstein distance function is introduced to evaluate the 
similarity of data distributions, replacing the research ideas 
that use core distribution control parameters to character-
ize distribution similarity evaluation (Panaretos and Zemel 
2019). To address third problem, the study replaces the 
subjective statistical windowing method with a grid matrix 
cosine similarity evaluation method by dividing the trace 
map into grids (Rawat and Bajracharya 2015). This effec-
tively converts local into global evaluations.
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Therefore, this study establishes a complete discrete frac-
ture network similarity evaluation system based on machine 
vision methods and statistical principles. Five two-dimen-
sional indicators are proposed for evaluating discrete frac-
ture networks modelling, including fracture spacing, length, 
angle, position, and density. Targeted similarity calculation 
methods are adopted for each indicator, and the importance 
and size effects of the indicators are discussed in conjunction 
with fracture model cases. Finally, the established similarity 
evaluation system is applied to real engineering projects in 
Hebei Province, China, to verify the practical technical value 
of this research method.

2  Proposed Method

The evaluation of similarity in 2D discrete fracture networks 
involves consideration of engineering and geometric indica-
tors that reflect the characteristics of fracture traces. The 
most commonly used indicators in current research include 
direction, length, and position. However, several widely used 
surrounding rock classification systems, such as the Code 
for Design of Tunnels 2004, the Engineering Rock Mass 
Classification Standard, and the Rock Mass Rating (RMR) 

classification standard (Bieniawski 1993; Cai et al. 2023; 
China 2014; Liu et al. 2019), also emphasize the impor-
tance of describing the integrity of rock mass in terms of the 
spacing and density of structural planes. Thus, five types of 
similarity indicators were determined in this study, namely 
direction, length, spacing, position, and density, based on 
which a comprehensive similarity evaluation model was 
established. The main process of comprehensive similarity 
calculation is illustrated in Fig. 1, which involves two sets 
of methods: the pre-judgment of the existence of the same 
group between traces, followed by a more precise calcula-
tion of the similarity within the same trace group. The final 
similarity is calculated based on the global distribution char-
acteristics for the trace maps that do not have the same trace 
group. The grouping of traces is critical for accurately rep-
resenting the internal structure of discontinuities. Therefore, 
precise grouping data ensures minimal deviation in fracture 
modeling.

The proposed method determines the whole or group 
similarity index by judging whether the two comparative 
trace maps have the same number of trace groups. Match-
ing occurs when the number of groups in the trace maps 
is the same, whereupon each group is compared individu-
ally. If the number of groups is different, the trace map 

Fig. 1  Calculation flowchart of 
comprehensive similarity
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is compared as a whole. The calculations of the compre-
hensive group and whole similarity are presented in Eqs. 
(1–2).

where Sgc and Swc are the comprehensive group and whole 
similarities; Sd is the direction similarity; Swl and Sgl rep-
resent the whole and group length similarities; Sws and 
Sgs denote the whole and group spacing similarities; Swp 
and Sgp are the whole and group position similarities; 
Swd and Sgd refer to the whole and group density similari-
ties. The weight of each similarity is indicated by {a, b, 
c, d, e}, which can be adjusted based on project require-
ments. Specifically, the definition of rock mass engineer-
ing can be determined by incorporating the emphasis of 
specific geological and hydrological factors, which vary 
across different engineering projects. It is to be noted that 
the self-adjustment of parameter weights is not aimed at 
maximizing or optimizing the overall similarity value, 
but rather at assessing the significance of each parame-
ter on the engineering process. It is important to ensure 
that a + b + c + d + e = 1 . For this study, to simplify the 
weight setting, all weights were assumed to be equal, i.e., 
a = b = c = d = e = 0.2 . Regardless of trace grouping, 
direction similarity is a universal indicator for similarity 
evaluation, as evident from Eqs. (1–2). Calculation of the 
other four indicators can be automatically adjusted based 
on the trace grouping relationship.

3  Algorithm Implementation

3.1  Trace Grouping and Matching

To accurately depict the trace properties of rock masses in 
the field, this study builds on previous research by utilizing 
deep learning to extract trace contours (see Fig. 2). The 

(1)Sgc =
aSd + bSgl + cSgs + dSgp + eSgd

5

(2)Swc =
aSd + bSwl + cSws + dSwp + eSwd

5
,

trace contour skeleton is subsequently extracted, and key 
nodes of the trace are determined using the chain-code-
based algorithm that approximates nodes to multiple seg-
ments. This method enables precise and effective extraction 
of key node coordinates required for trace grouping. The 
trace interruption algorithm, which is based on an angle 
threshold, is then employed to separate traces belonging 
to different groups. Disjoint traces are logically clustered 
using the improved K-means +  + clustering algorithm. The 
Silhouette validity index (SVI) is utilized to determine the 
optimal group. These steps comprise the primary process 
of trace grouping. Further details can be found in Chen 
et al. (2022a).

To clearly and rigorously describe the process of auto-
matically identifying group relationships and matching sub-
ordinate groups, a simple algorithm for group matching is 
proposed in this study, as shown in Eq. (3):

where Gm is defined as an indicator to measure the ration-
ality of group matching; D1,i refers to the mean direction 
of group i in map 1; D1,Ci represents the mean angle of 
Group Ci in map 2. Specifically, the number of groups in 
control map 1 is assumed to be {1, 2,… , n} . Go through 
the number of map 2 in the way of arrangement and com-
bination, and record it as { C1, C2,… , Cn }. To obtain an 
optimal matching, the mean direction values of each group 
in the two maps are calculated based on the arrangement 
and combination. The basis for selecting the optimal group 
is the sum of the absolute values of the differences, as the 
matching combination with the minimum sum of differ-
ences is considered to be the best match. It is worth noting 
that the exhaustive method is used when reprogramming 
map 2, since the number of trace groups in real engineering 
projects is often between 3 and 5.

3.2  Direction Similarity

Dip and dip direction are essential factors that affect the 
stability of the rock mass with 3D fractures. Despite the 
feasibility of obtaining dip direction parameter through 

(3)Gm = min

�∑i=n

i=1
��D1,i − D2,Ci

��
n

�
,

Fig. 2  Diagram from the original map to trace grouping of tunnel face
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multi-angle photography and 3D reconstruction of rock 
mass, their primary application is found in the modeling 
of 3D DFN. Simultaneously, planar angle-related issues 
are often manifested due to the directional characteristics 
of trace lines in 2D fracture networks. Hence, the direc-
tion becomes a substitute for these two factors. Currently, 
research on direction similarity mainly focuses on express-
ing the distribution with key control parameters (e.g., mean 
and standard deviation) rather than the distribution form. 
However, this simplification may weaken the distribution 
information and even ignore key information. The difficulty 
of evaluating and quantifying the distribution it may be the 
potential reason.

To address this issue, a statistical distribution comparison 
method, Wasserstein distance method (WDM), is proposed 
to directly compare two distributions and determine their 
similarity (Panaretos and Zemel 2019). The first-order Was-
serstein distance is defined as follows for two given distribu-
tions u and v in WDM.

where Γ(u,v) is a set of probability distributions with a size 
of R × R ; |x–y| denotes the change cost from x to y; inf rep-
resents the lower limit. Assuming the original distribution as 
u and the target distribution as v, the values at position x in 
the original and target distributions are denoted by u(x) and 
v(x), respectively. Specifically, if u(x) > v(x), the value at x 
should be moved to another position, whereas if u(x) ≤ v(x), 
the value should be moved to x from another position. The 
formula involves d�(x, y) = �(x, y)dxdy , where �(x, y) in the 
left formula represents the amount of probability density that 
is moved from x to y.

Furthermore, it should be noted that Eq. (4) entails deter-
mining the minimum cost among all possible methods of 
converting the probability distribution u(x) to v(x). It is 
important to highlight that the cost of transformation can 
be evaluated not only using the 1-norm |x–y|, but also by 

(4)l1(u, v) = inf
�∈Γ(u,v)

∫
R×R

|x − y|d�(x, y),

the p-norm x − yP . Thus, the p-dimensional distribution of 
fractures can be formulated as shown in Eq. (5).

In general, the WDM has the following advantages 
(Mémoli 2011; Panaretos and Zemel 2019): (1) it can natu-
rally measure the distance between discrete distributions, 
(2) it can provide a scheme for converting one distribution 
to another rather than just measuring the distance between 
them, and (3) it can maintain the geometric properties of the 
distribution by continuously converting one distribution to 
another. Using WDM, the similarity of the direction distri-
bution Sd can be defined as in Eq. (6).

where A1 and A2 refer to the direction distributions of the 
two compared maps; WD denotes the Wasserstein distance 
calculation of the two distributions. In particular, larger WD 
values correspond to lower similarity, while smaller values 
indicate higher similarity. To standardize the comparison, 
the difference between WD and 180 is divided by 180 to 
control for the similarity between [0, 1]. Thus, if the two 
distributions are completely inconsistent, Sd equals 0, while 
if they are identical, Sd equals 1. The similarity is evaluated 
using the median value.

To demonstrate the effectiveness of the proposed method, 
two arbitrary comparison example maps and corresponding 
distribution statistics results are presented in Fig. 3. From 
a qualitative perspective, dissimilarities exist between the 
distribution rules of the blue and red histograms within 
several ranges, such as [37.5°, 50°], [87.5°, 100°], [125°, 
175°], among others. From a quantitative perspective, the 
WD value and Sd were employed to calculate a final similar-
ity score of 0.423. It is concluded that the distribution of the 
two maps is not consistent.

(5)lp(u, v) =

(
inf

�∈Γ(u,v)
∫

R×R
|x − y|pd�(x, y)

)1∕p

.

(6)Sd =

|||180 −WD
(
A1,A2

)|||
180

,

Fig. 3  Two arbitrary trace maps 
and corresponding direction 
distributions
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3.3  Length Similarity

Similar to the statistics of angle parameters, current research 
pays more attention to the core variable controlling length, 
while neglecting the evaluation of the whole length distribu-
tion. To counteract this, the WDM method continues to be 
employed in this section to perform distribution statistics. 
Furthermore, the description of length similarity is refined 
by dividing it into group and whole length similarity based 
on group matching. In other words, if the two maps have 
the same groups, the group length similarity is calculated 
directly; otherwise, the whole length similarity is calculated.

(1) Group length similarity

After ensuring that the trace groups are consistent and 
matching is completed, Eq. (7) is proposed to calculate the 
grouping length similarity of comparative maps.

where Sgl refers to the group length similarity; L1i , L2Ci
 are 

the length of the matched trace groups in maps 1 and 2 (i.e., 
group i in map 1 and group Ci in map 2); n denotes the num-
ber of trace groups; WDl is the Wasserstein distance value of 
length distribution from the remodeling of the value range 
to [0, 1].

The main purpose of value conversion is to make a rea-
sonable and uniform comprehensive similarity evaluation. 
The primary purpose of this value conversion is to enable 
a reasonable and uniform comprehensive similarity evalu-
ation. The specific implementation process is defined in 
Eq. (8). The difference between the obtained distance and 
the larger value of the mean of the two distributions is taken 

(7)Sgl =

∑n

i=1
WDl

�
L1i, L2Ci

�

n
,

and then divided by the mean. The max() function is used in 
the outermost layer of the formula molecule to ensure that 
the minimum value is greater than or equal to 0.

where WD refers to the Wasserstein distance, more detailed 
calculation process can be seen in Sect. 3.1. Thus, the defini-
tion of interval value of Sgl is completed.

(2) Whole length similarity

The whole length similarity Swl is different from Sgl cal-
culation, which only needs to combine the global length 
distribution of the trace map. There are therefore slight dif-
ferences in Swl calculation, the specific definition is shown 
in Eq. (9).

where L1i, L2i is the length distribution of the fracture traces 
in the two contrast maps. Similar to Eq. (8), value conver-
sion to [0, 1] is also applied in Eq. (9). In addition, since 
the method of calculating the similarity based on the global 
trace length is considered, there is no need to carry out the 
averaging operation.

(3) Comparison

To further analyze the performance of Sgl and Swl , two 
arbitrary maps with the same trace groups are used for 
comparative analysis. Figure 4 shows the group and whole 
length distributions counted from two comparative maps. 
Then, the WDM method is used to calculate the values 

(8)
WD

l

(
L1i, L2Ci

)

=
max

(
0,
(
max

(
mean

(
L1

)
, mean

(
L2

))
−WD

(
L1i, L2Ci

)))

max
(
mean

(
L1

)
, mean

(
L2

)) ,

(9)

Swl =
max(0,

(
max

(
mean

(
L1
)
,mean

(
L2
))

− DW
((
L1i, L2i

)))

max
(
mean

(
L1
)
,mean

(
L2
)) ,

Fig. 4  Two arbitrary trace maps and corresponding length distributions
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of Sgl and Swl . The results show that the group and whole 
length similarity are 41.3% and 72.0%, respectively. It is 
seen that the statistical method of Sgl is strict than that of 
Swl . Meanwhile, although the whole length distribution 
of the two maps is similar qualitatively, the distribution 
differences of each group are obvious after considering 
grouping. This also caused significant fluctuations in the 
length distribution within the same group.

3.4  Spacing Similarity

(1) Group spacing similarity

In the previous study, the spacing similarity has not yet 
emerged as a main indicator in the similarity evaluation sys-
tem. Due to the importance of rock mass structure, spacing 
will be included in the similarity evaluation system for the 
first time. In this context, spacing is defined as the distance 
between adjacent individual trace lines. Furthermore, depend-
ing on the distinct adjacent attributes (whether they pertain to 
the same group or differ), spacing is subsequently classified 
into inter-group spacing and overall spacing. Herein, the divi-
sion principles of group and whole similarity continue to be 
used. However, in a small range of rock mass area such as 
tunnel face, the spacing of each trace group does not differ 
greatly in quantity. Thus, the average value is directly applied 
instead of the distribution as the main feature to characterize 
the set spacing. On this basis, the mean value of each group 
spacing is executed according to the definition of Eq. (10), and 
the group spacing similarity Sgs is obtained.

(10)
Sgs =

∑n

i=1
min

�
S1i

S2Ci

,
S2Ci

S1i

�

n
,

where S1i , S2Ci
 denote the mean spacings of the matched 

trace group in maps 1 and 2 (i.e., group i in map 1 and group 
Ci in map 2); n is the number of trace groups.

In Eq. (10), the smaller value of the ratio between S1i and 
S2Ci

 is directly used as the similarity of a single matched 
group to ensure that a [0, 1] value range. Then, sum and 
average the similarity of each group to achieve the calcula-
tion of group similarity within a reasonable range.

(2) Whole spacing similarity

Similar to group spacing similarity, the average value of 
spacing is also used to characterize the spacing characteris-
tics when calculating the whole spacing similarity. Since the 
number of groups in the comparison chart is different when 
calculating the overall spacing, the method of summing and 
averaging the average spacing of each group is used to calcu-
late the spacing of the entire trace map. Finally, the smaller 
ratio of the two is used to ensure the value is less than 1. The 
specific definition is shown in Eq. (11).

where Sws is whole spacing similarity; S1i , S2i denote the 
mean spacing of ith trace group in maps 1 and 2; n, m is the 
group number of two maps, respectively.

(3) Comparison

To compare the two similarity evaluation schemes, two 
maps with the same group number are selected for analysis 
(see in Fig. 5). Unlike the previous indicators, the number 
of groups here must be consistent to ensure complete cor-
respondence between groups in the evaluation of Sgs . On 
the basis, the trace spacing distribution of the five groups is 
statistically analyzed, and Fig. 5c is obtained. According to 

(11)Sws = min

�
(
∑i=n

i=1
S1i)∕n

(
∑i=m

i=1
S2i)∕m

,
(
∑i=m

i=1
S2i)∕m

(
∑i=n

i=1
S1i)∕n

�
,

(a) Generated map 1 (b) Generated map 2 (c) Mean spacing distributions

Fig. 5  Two arbitrary trace maps and corresponding mean spacing distributions
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Eqs. , the values of Sgs . and Sws for the total average spac-
ing in Fig. 5c are 0.642 and 0.9, respectively. It is seen that 
although the group is consistent, Sgs 's evaluation is much 
stricter than that of Sws . The main reason is that the fluc-
tuation of each group is ignored in the Sws calculation, and 
only the change of the total average spacing is emphasized, 
largely ignoring the change in the spacing of each group is 
greatly. Therefore, the solution of each group’s spacing has 
a great impact on the final spacing similarity.

3.5  Position Similarity

To comprehensively characterize the position similarity, a 
novel method is proposed for evaluating the position infor-
mation. As shown in Fig. 6, the proposed method includes 
the following steps: (1) generating a discrete fracture mesh; 
(2) puncturing each continuous fracture column (line seg-
ment), i.e., replacing each line segment with a unit length 
by a point with a certain distance interval; (3) dividing the 
original complete fracture column area into grids; (4) calcu-
lating the centroid for the points in each area and recording 
the information in area (i, j) as centroid coordinates (xij, yij).

Solving the similarity of the centroids is undoubtedly 
cumbersome in this study, so all the centroids of the grids 
are combined and then determined in a matrix. The barycen-
tric coordinates of each grid are listed in Eq. (12). They are 
defined by calculating the average value of the product of the 
barycenter coordinates and trace length in each grid.

where xij,k , yij,k , lij,k refer to the abscissa center, the ordinate, 
and the length of the kth lines selected in the ith row and 
jth column regions, respectively; t is the number of lines 
selected in corresponding regions.

(12)

⎧⎪⎨⎪⎩

xij =
∑t

k=1
xij,k×lij,k

t

yij =
∑t

k=1
yij,k×lij,k

t

According to the above calculation definition, the whole 
trace region is assumed to be divided into n × m. Then, the 
barycentric coordinates 

(
xij, yij

)
 are calculated for all points 

in each grid. Two matrices of the contrast curve are thus 
obtained from the compared maps. As shown in Eq. (13), 
the abscissa of the centroid of the area represented by each 
element in the matrix xij and ordinate yij two information.

Through the above way, an m × n matrix composed of 
each grid centroid is formed. However, due to the complex-
ity and disorder of matrices, it is not easy to evaluate their 
similarity. It is well known that the cosine value (defined in 
Eq. (14)) is commonly used to characterize the similarity 
between vectors (Dong et al. 2006; Ye 2011).

where the cosine similarity cosθ is a value with a range of 
[− 1,1]; xi , yi refer to the ith values of two arbitrarily vectors 
of length k, i.e., [ x1, x2, x3,… xk ], 

[
y1, y2, y3,… yk

]
 . Undoubt-

edly. If vectors of xi and yi have the same or opposite direc-
tion, the cosine similarity is 1 or − 1. If they are perpendicu-
lar to each other, the result is 0.

Moreover, a matrix can be considered as a set of vectors. 
Inspired by vector similarity calculation, a matrix cosine 
calculation method is therefore proposed to characterize the 
similarity (Fouss et al. 2007). The definition is shown in 
Eq. (15).

(13)
⎡
⎢⎢⎣

�
x11, y11

�
⋯

�
x1k, y1k

�
⋮ ⋱ ⋮�

xh1, yh1
�
⋯

�
xhk, yhk

�
⎤
⎥⎥⎦
.

(14)cos � =

∑k

i=1
xiyi�∑k

i=1

�
xi
�2�∑k

i=1

�
yi
�2 ,

(15)cos(A,B) =
�������⃗Ah×k ⋅

�������⃗Bh×k

|||�������⃗Ah×k
||| ⋅

|||�������⃗Bh×k
|||
,

Fig. 6  Flowchart of position similarity evaluation
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where cos(A,B) is the cosine similarity of matrices; �������⃗Ah×k , 
�������⃗Bh×k refer to the centroid matrices of h × k generated from 
the trace maps. To keep consistent with the previous indica-
tors, Eq. (16) was used to convert the values on the original 
[− 1, 1] interval to the interval [0, 1].

Based on the above cosine similarity method, the defini-
tions of group and whole position similarity can be deduced 
as follows:

where Sgp and Sws represent the group and whole position 
similarity. It is found from Eqs. (17–18) that Sgp is the aver-
age value of the centroid matrix similarity of each group of 
traces, while Sws donates directly the value of the centroid 
matrix similarity.

To compare Sgp and Sws , two traces with the same number 
of groups are randomly selected to count the corresponding 
centroid coordinates and matrices. The visualization results 
are shown in Fig. 7, from which the values of Sgp and Sws 
are calculated to be 0.584 and 0.827, respectively. The same 
conclusion can be thus drawn that the Sgp index is more rig-
orous and complex than Sws . Also, the position similarity 
characteristics of each group have a great impact on the ulti-
mate Sgp value. It is concluded that Sgp are more applicable 
to projects with strict modeling requirements.

(16)cos(A,B)� = 0.5 + 0.5 × cos(A,B).

(17)Sgp =

∑i=n

i=1
cos

i(A,B)
�

n

(18)Swp = cos (A,B)�,

3.6  Density Similarity

In the process of density similarity calculation, the method 
of “dotting and gridding” (see in Fig. 6) is also used here, but 
the information recorded in each grid has been changed from 
centroid coordinates to point numbers. That is, the operation 
of step 4 in Fig. 6 is replaced by counting the points in each 
grid. Similar to the barycentric matrix in the previous section, 
the trace map is also divided into m × n by gridding. Then, the 
points in each grid (i.e., ith row and jth column) are counted 
to obtain numij . Traversing the entire map in this way yields 
the quantity matrix, as shown in Eq. (19).

It is worth noting that the original definition of trace density 
is the length of traces per unit area. Since the trace width is 1 
pixel in this study, the number of trace points is used to reflect 
the length in an equal proportion. Therefore, the density simi-
larity can be obtained by comparing and averaging the point 
number of all grids in the two maps. The specific definition is 
shown in Eq. (20).

where Sd is the density similarity, num1,hk , num2,hk are the 
numhk values of two compared trace maps. h, k refer to grid-
ded rows and columns in maps.

The group and whole density similarity indexes have differ-
ent calculation manners due to the different definitions. That is, 
the group density similarity Sgd is the summation and averag-
ing of Sd values of each trace group, while the whole density 

(19)
⎡
⎢⎢⎣

num11 ⋯ num1k

⋮ ⋱ ⋮

numh1 ⋯ numhk

⎤
⎥⎥⎦
.

(20)
Sd =

∑j=k

j=1

∑i=h

i=1
min

�
num2,hk

num1,hk

,
num1,hk

num2,hk

�

h × k
,

Fig. 7  Two arbitrary trace maps and corresponding group and whole position distributions (unit: pixel)
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similarity Swd is calculated by all traces, and the number is 
equal to Sd . The definitions are listed in Eqs. (21–22).

where Sdi is the density similarity Sd of ith trace group, n 
represents the total group number in maps.

To compare Sgd and Swd , two traces with the same number 
of groups are randomly selected to count the corresponding 
centroid coordinates and matrices. The visualization results 
are shown in Fig. 8, from which the values of Sgd and Swd 
are calculated to be 0.173 and 0.428, respectively. The same 
conclusion can be thus drawn that the Sgd index is more rig-
orous than Swd . Also, the density similarity characteristics 
of each group have a great impact on the ultimate Sgd value. 
Specifically, in the process of grouping similarity calcula-
tion, although the directions of each group are similar, sig-
nificant differences in density similarity statistics arise due 
to differences in the position and number of traces in each 
group. This is also the direct reason why Sgd is more difficult 
to achieve satisfactory results than Swd indicator.

4  Applications and Discussion

4.1  Engineering Application

In this study, an engineering case of a tunnel project under 
construction will be utilized to verify the effectiveness of the 
proposed similarity evaluation method. The Yangjiawopu 
Tunnel is located at the Lijiaying junction of the Changjiang-
Shenzhen Highway (G25) in the Chengping section of the 

(21)Sgd =

n∑
i=1

Sdi

(22)Swd = Sd,

Ring Road in the Capital Region (see in Fig. 9a). It spans 
a total length of 5054 m, passing through Yingshouyingzi 
Mining Area and Xinglong County in the west, and reaching 
Pinggu district, Beijing in the south. The starting and ending 
pile numbers are K52 + 226 and K57 + 280 (see in Fig. 9b).

To obtain the discontinuity occurrences, a photogra-
phy-based method is used to collect tunnel face images at 
K53 + 510-K54 + 140 on the right line. Feature extractions 
are performed via a FraSegNet-based deep learning method 
(Chen et al. 2021b). To verify the effectiveness of similarity 
evaluation, a tunnel section located at K53 + 810 is selected 
(see in Fig. 9c). The occurrence of the applied tunnel face is 
shown in Table 1, using the rock mass occurrence solution 
method developed by our research group. On this basis, the 
Discrete Fracture Network (DFN) method is employed to 
construct a new network to simulate the real structure in the 
field. The main purpose of this step is to verify the effective-
ness of the proposed similarity model. As it is not possible 
to define the functional information of trace position and 
density in the original map, a uniform distribution is used 
as the main basis for modeling.

To assess the modeling effectiveness of the DFN and 
the similarity assessment method, five fracture networks 
depicted in Fig. 10 were generated using the provided occur-
rence distributions. Qualitative analysis of the overall occur-
rence distribution indicates a high level of modeling consist-
ency across the compared maps. Subsequently, engineers 
may base their analysis on these results, without considering 
the occurrence similarity of the DFN models.

The proposed similarity evaluation method was employed 
to calculate the similarities between the generated trace 
maps and the real map, which are presented in Table 2. The 
mean similarity values for direction and length are notably 
higher, reaching 68.1 and 73.1, respectively, compared to 
the other three indicators. This could be attributed to the 

Fig. 8  Two arbitrary trace maps and corresponding mean spacing distributions
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DFN technology's ability to more accurately depict trace 
distributions, with length and direction directly influencing 
map generation. However, the assumption of uniform distri-
bution for both position and density during DFN modeling 
leads to maps that deviate significantly from the real map, 
resulting in higher standard deviations for these two indica-
tors. Notably, despite both density and position being based 
on grid statistics, they do not exhibit a positive or negative 
correlation in each graph, indicating that they are independ-
ent indicators that do not affect the final similarity statistical 
results. Generated map 5 exhibits a slightly superior compre-
hensive similarity value of 60, although this difference is dif-
ficult to discern quantitatively. Furthermore, the systematic 
similarity indexes provide valuable optimization directions 
for subsequent modeling.

4.2  Discussion

(1) Indicator contribution

Five similarity evaluation indicators were utilized in this 
study to determine the comprehensive similarity, with each 
index having varying effects on the final result. To highlight 
the importance of each indicator on the comprehensive indi-
ces, the absence of each indicator was investigated, and the 
detailed changes in the overall similarity are presented in 
Fig. 11. The results demonstrate that the length similarity 
has the greatest impact on the overall similarity, followed 
by direction and position similarities. Eliminating both 
direction and length indicators results in decreased overall 
similarity, while density and position similarity are stringent 

Fig. 9  Basic information of tunnel site, including a geographic location, b satellite map, c selected tunnel face and trace map

Table 1  Trace distribution 
features based on field 
acquisition and feature 
extraction

Group
NO

Direction Length Spacing Trace
number

Mean
(°)

Fisher constant Gamma coef-
ficient K

Gamma coef-
ficient θ

Mean
(m)

Standard 
deviation

1 162 3.79 3.7 0.8 0.45 0.04 47
2 36 2.94 2.8 1.5 0.61 0.08 18
3 118 5.11 4.3 1.1 0.33 0.10 74
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indicators that may improve the comprehensive similarity 
when removed. Therefore, it is concluded that increasing the 
similarity indicators of density and position can significantly 
enhance refined modeling. The spacing similarity is consid-
ered a compromise index that has the least influence on the 
final evaluation index. It is worth noting that this analysis 
is naturally random and only applicable to one typical case; 
however, it provides an improvement direction for refining 
the current method for modeling discrete fracture networks.

(2) Grid size effect

In the previous section, it was established that optimizing 
the comprehensive performance of position and density indi-
cators can lead to further improvement in overall similarity. 

Fig. 10  On site statistical and correspondingly generated fracture trace maps

Table 2  Similarity statistics 
between original and generated 
maps

Generated maps Similarity value (%)

Direction Length Spacing Position Density Comprehensive

Map 1 67.5 72.6 49.1 34.4 50.6 54.8
Map 2 64.8 78.4 56.6 43.5 32.1 55.1
Map 3 69.6 65.4 47.8 48.9 38.3 54.0
Map 4 66.1 77.9 43.8 31.1 35.5 50.9
Map 5 72.3 73.1 55.6 44.1 55.9 60.2
Mean 68.1 73.5 50.6 40.4 42.5
Std 2.7 4.7 4.8 6.6 9.2 –

-8

-4

0

4

8

)
%(eulav

noitairav
ytirali

miS

Similarity index

Map 1 Map 2
Map 3 Map 4
Map 5 Mean

Direction Length Spacing Position Density

Fig. 11  Change of whole similarity index after removing one index
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The calculation process for both indicators involves grid-
based statistical evaluation methods. However, the size 
effect of the mesh may inevitably increase the similarity. 
Therefore, this study discusses the changes in corresponding 
density similarity caused by grid changes using examples. 
A random trace map with a size of 60 × 60 was generated by 
combining the trace distribution in Fig. 8 and was divided 
into grid sizes of 15 × 15, 6 × 6, and 4 × 4. The density grid 
diagrams for different levels are presented in Fig. 12, uti-
lizing the density grid visualization method outlined in 
Sect. 3.6.

Based on this, the corresponding similarity values under 
each grid size are calculated and presented in Table 3. It 
was observed that group density similarity was generally 
lower than the overall density similarity, indicating that the 
group density similarity is more stringent. Additionally, 
finer subdivision of smaller grids provides more detailed 
statistics, making it more suitable for common trace maps 
with high similarity. Therefore, the finer the mesh subdivi-
sion, the lower the comprehensive density similarity value, 
while coarser subdivision leads to higher similarity values. 
In conclusion, the statistical value of similarity can adjust 
the severity of the similarity score by adjusting the fineness 
of the mesh. It is worth noting that the primary focus of this 

study lies on the grid effect of tunnel face site dimensions. 
For other site dimensions, appropriate actions should be 
taken based on the engineering control threshold or crite-
ria for modeling similarity. In cases where a high similarity 
threshold is mandated, an increase in the grid cell size is 
warranted. Conversely, when a low similarity threshold is 
established, a reduction in the grid cell size is recommended 
to minimize similarity calculations.

5  Conclusions

This paper proposes a comprehensive similarity evaluation 
method for assessing the effectiveness of rock fracture trace 
map generation. Both group and whole similarity calcula-
tions are considered by raising five indicators: direction, 
length, spacing, position, and density similarities. To dem-
onstrate the rationality and effectiveness of the proposed 
method, a typical engineering application is performed. The 
importance of indicators and grid size effect are also com-
prehensively analyzed to systematically discuss the future 
similarity improvement direction. The main findings are 
presented as follows:

Fig. 12  Change of whole 
similarity index after removing 
one index

Table 3  Statistical density 
similarities of group and whole 
under different grid sizes

Grid size Group density similarity Whole 
density 
similarityGroup 1 Group 2 Group 3 Group 4 Group 5 Mean

4 × 4 0.669 0.743 0.68 0.089 0.435 0.5232 0.778
6 × 6 0.436 0.662 0.389 0.086 0.123 0.3392 0.669
15 × 15 0.085 0.191 0.167 0.014 0.011 0.0936 0.42
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(1) The proposed method considers fracture grouping that is 
often ignored during the diagenetic process of structural 
planes. Based on the grouping information, the compre-
hensive similarity is divided into group and whole simi-
larity indicators. It is found that the total similarity cal-
culated by grouping indicators is more rigorous than the 
overall calculation. Group and whole similarity are more 
suitable for projects with high requirements for fracture 
modelling and conventional engineering, respectively.

(2) The method employs dotting and gridding operations on 
the trace to calculate position and density similarity, con-
verting the two abstract indicators into concrete param-
eters within the grid. Cosine similarity calculation and 
grid correspondence comparative research are conducted 
on the statistically obtained parameter matrix, position 
and density similarities are obtained, respectively. The 
research indicates that the fracture point segmentation 
combined with grid similarity statistics can provide an 
important idea for optimizing the modelling position.

(3) Combining the importance of indicators and grid scale 
effects, it is found that the contribution of inclination 
and length to the comprehensive similarity index is 
significantly greater than that of density and position 
due to their high relative values. Moreover, coarsening 
the mesh can help improve the indicator values of den-
sity and position. Engineers can use different statisti-
cal dimensions for sites of different engineering levels 
based on their own needs.

Although the proposed method adds the important impact 
of trace grouping and spacing to the existing trace similarity 
evaluation, a new position and density evaluation method 
based on grid matrix is also proposed. However, the prac-
tice of averaging five indicators to obtain comprehensive 
indicators remains to be discussed. In the future, it is pos-
sible to deeply explore the impact of various indicators on 
the properties of rock masses and redefine the importance 
based on this rule.
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